Graphene, an incredible material: the role of chemistry in realizing the promise of technological innovation

Giuseppe Valerio Bianco

CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4, 70126, Bari, Italy

G,Bruno P, Capezzuto M. Losurdo M. Giangregorio A. Sacchetti

Why is graphene "incredible"?

giuseppevalerio.bianco@cnr.it

n Graphene Lab

When does graphene material became graphite?

The demonstration of ambipolarity/tunability can be exploited to discriminate univocally a **graphenic** material from a **graphitic** one

CVD graphene

giuseppevalerio.bianco@cnr.it

Mechanically Exfoliated graphene

The graphene promises

Potential graphene applications

- Electronics
- Optoelectonis
- Photonics
- Sensing
- Energy
- •••

Flexible transistor

THz modulators and antennas

Apulian Graphene Lab

EMI shield

The graphene promises **DRAWBAKS**

Potential graphene applications

- Electronics
- Optoelectonis
- Photonics
- Sensing
- Energy
- •••

Flexible transistor

giuseppevalerio.bianco@cnr.it

Proceedings of the IEEE, 101, (2013)1705 NATURE COMMUN 2015) 6628

Main "nontransistor" application of Graphene

Graphene as Transparent and Flexible conductive film to replace ITO

(very strong competitor!!!)

Partial contact or presence of impurities contribute to contact/series resistances between graphene layers

bulian Graphene Lab

Main "nontransistor" application of Graphene

Graphene as Transparent and Flexible conductive film... to replace ITO

(very strong competitor!!!)

bulian Graphene Lab

Lowering the sheet resistance of CVD graphene by doping

- HNO₃ doped graphene (30Ω/sq)
 [Nat. Nanotechnol., **2010**, 5, 574–578]
- AuCl₃ doped graphene (54Ω/sq)
 [ACS Nano, **2010**, 4, 4595]
- \star HNO₃ doped graphene (63Ω/sq)
- AuCl₃-CH₃NO₂ doped graphene (43Ω/sq)
 [Nano Lett. **2011**, 11, 5154–5158]
- FeCl₃ doped graphene (72Ω/sq)
 [Nanotechnology, 2014, 25, 395701]
- CL₂ doped graphene (70Ω/sq) [Nanoscale, **2014**, 6, 15301–15308]

Chemical Treatment for Lowering R_s of CVD Graphene: HNO₃ Doping

\star State of the art: 30 Ω /sq

4L graphene treated with HNO₃ [Nat. Nanotechnol., **2010**, 5, 574–578] Graphene **p**-doping by HNO₃ $10HNO_3 + 50C \rightarrow (6HNO_3)2NO_3^-C_{50}^+ + 2NO_2 + 2H_2$

Chemical Treatment for Lowering R_s of CVD Graphene : **SOCl₂ Doping**

Covalent attachment of electron acceptor species (-Cl) without creating new C-sp³ charge scattering center *Taking advantage of intrinsic chemical defects in CVD graphene*

"nucleophilic substitution reaction"

Apulian Graphene Lab

Chemical Treatment for Lowering R_s of CVD Graphene : **SOCl₂ Doping**

Covalent attachment of electron acceptor species (-Cl) without creating new C-sp³ charge scattering center *Taking advantage of intrinsic chemical defects in CVD graphene*

giuseppevalerio.bianco@cnr.it

Chemical Treatment for Lowering R_s of CVD Graphene : **SOCl₂ Doping**

Covalent attachment of electron acceptor species (-Cl) without creating new C-sp3 charge scattering center Taking advantage of intrinsic defects in CVD graphene

Towards Very Low Rs CVD Graphene

M. Grande, G. V. Bianco, et al, Scientific Reports 5 (2015) 17083

giuseppevalerio.bianco@cnr.it

Microwave Applications of Quasi-Metallic Graphene

Electromagnetic response of graphene at microwave frequencies

$$\sigma(\omega) = \sigma_{\rm DC}/(1 - i\omega\tau)$$

Drude-like optical conductivity

Quasi-metallic graphene for developing flexible and transparent microwave devices (shields, polarizers, antennas, etc)

- CNR-NANOTEC, Bari, Italy
- Politecnico di Bari, Italy
- Redstone Arsenal, Alabama-USA

Scientific Reports 5 (2015) 17083

pulian Graphene Lab

Optically Transparent Microwave Polarizer Based on Graphene

M. Grande, G. V. Bianco, et al, Scientific Reports, 5 (2015) 17083

- CNR-NANOTEC, Bari, Italy
- Politecnico di Bari, Italy
- Redstone Arsenal, Alabama-USA

giuseppevalerio.bianco@cnr.it

(operating frequency:9 GHz) *Apulian Graphene Lab*

Graphene EMI shield

SALISBURY SCREEN

APL 104, 081106 (2014)

Apulian Graphene Lab

The interplay between interference and losses leads to perfect absorption only for specific values of radiation frequencies (defined by the spacer thickness) and of graphene optical conductivity (defined by the Rs)

Graphene EMI shield

APL 104, 081106 (2014)

Apulian Graphene Lab

SALISBURY SCREEN

Optically transparent EMI shield

Optically transparent Graphene EMI shield

V. Bianco, M. Grande, et al Optics Express (2016), in press.

ט.

Apulian Graphene Lab

Optically transparent Graphene EMI shield

giuseppevalerio.bianco@cnr.it

Device performances: comparison between theory and experimental findings.

Apulian Graphene Lab

V. Bianco, M. Grande, et al Optics Express (2016), in press. ט.

PhotoThermal-Active Plasma-Fluorinated Graphene

Raman spectroscopy reveals the formation of polyenes in plasma-fluorinated graphene (low fluorine coverage)

PhotoThermal-Active Plasma-Fluorinated Graphene

Monitoring of fluorographene resistivity under light irradiation and annealing

Apulian Graphene Lab

G. Bruno, G.V. Bianco, et al, Phys.Chem.Chem.Phys., 16 (2014) 13948

PhotoThermal-Active Plasma-Fluorinated Graphene

Ellipsometric analysis of fluro graphene absortption coefficient under light irradiation and annealing

G. Bruno, G.V. Bianco, et al, Phys.Chem.Chem.Phys., 16 (2014) 13948

Apulian Graphene Lab

Improving graphene wettability by Oxygen plasma

Au contact on graphene

The low surface energy of graphene (70 mJ/m²) strongly limits its integration with other materials in technological devices

For multilayer graphene, modulated plasma treatment allows surface functionalization without important effects on the transport properties

Apulian Graphene Lab

Looking for a gap in graphene

Several research paths are being targeted at opening a bandgap in graphene: nanoribbon, biased bilayer graphene, chemically modified graphene, bent graphene....

"Substrate-induced bandgap opening in epitaxial graphene". Nature Materials, VOL 6 (2007) 771

Epitaxial Growth of Graphene on SiC

To increase homogeneity and control the thickness one has to lower the sublimation rate (r_s) while, at the same time, increasing the diffusion length (r_D)

Berger et al., J. Phys. Chem. B 108, 19912 (de Heer's group)

Epitaxial Growth of Graphene on SiC

To increase homogeneity and control the thickness one has to lower the sublimation rate (r_s) while, at the same time, increasing the diffusion length (r_D)

Ar atmosphere at \sim 900 mbar Ar ('D 0001 0001 Si-face SiC

K. V. Emtsev, T.Seyller, Nat. Mater. 8, 203 (2009).

Apulian Graphene Lab

Epitaxial Growth of Graphene on SiC

To increase homogeneity and control the thickness one has to lower the sublimation rate (r_s) while, at the same time, increasing the diffusion length (r_D)

Apulian Graphene Lab

K. V. Emtsev, T.Seyller, Nat. Mater. 8, 203 (2009).

The Chemical Route to Epitaxial Graphene

Apulian Graphene Lab

Probing ¹³C isotope effect on graphene

Apulian Graphene Lab

Energy gap in epitaxial graphene

giuseppevalerio.bianco@cnr.it

Conclusion

The role of chemistry in realizing the promise of technological innovation:

- Graphene chemical doping by SOCl₂ allows the production of very low sheet resistance graphene for TCL and microwave applications.
- Graphene functionalization by **modulated plasma treatment** can be exploited for the fine tuning of its optical conductivity in the THz-MW range (H), increasing surface wettability (O), and introducing new properties (F)
- CO₂ chemistry has been demonstrated a promising method for growing "gapped" epitaxial graphene.

Optically transparent Graphene EMI shield

Device performances: comparison between theory and experimental findings.

ن CNR-NANOTE

V. Bianco, M. Grande, et al Optics Express (2016), in press.

giuseppevalerio.bianco@cnr.it